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ABSTRACT

A time domain approach is presented to compute the trans-
mission and reflection coefficients of a unit cell. The solution of a
wave scattering problem to an ultra-short incident wave enables
the derivation of these scattering parameters with only one time
domain solution. The adaptive operations of a spacetime discon-
tinuous Galerkin method and several or its unique properties,
such as linear solution complexity and local / asynchronous solu-
tion features, enable accurate computation of scattering parame-
ters. An inverse parameter retrieval method, from the equivalent
material impedance and wave speed to dispersive elastic consti-
tutive parameters, is uniquely solved by using the continuity of
the wavenumber.

INTRODUCTION

For elastodynamics primary fields strain €, stress o, linear
momentum P, and velocity v are related by constitutive equa-
tions in the form € = Do and p = pv, where D is the compli-
ance tensor and p is mass density. For one dimensional wave
propagation only nonzero components of the fields are consid-
ered and the compliance matrix can be represented by a scalar D
whose value can be determined from the dimension of problem
and wave propagation mode (longitudinal versus shear). There
are several approaches including field averaging and parame-
ter retrieval methods to characterize dispersive, i.e., frequency-
dependent, constitutive parameters of an elastodynamic medium;

*Address all correspondence to this author.

cf. [1,2] for a detailed review of dynamic homogenization. Fig-
ure 1 shows the concept of parameter retrieval method for a one
dimensional wave through a slab /. By having the impedance
Z =+/p/D and wave speed ¢ = 1/+/Dp of the slab and the con-
stitutive parameters of the ambient Dy and py one can compute
transmission and reflection of the slab for all frequencies.
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FIGURE 1. SCHEMATIC OF THE PARAMETER RETRIEVAL
METHOD. FROM COMPUTATIONALLY OR EXPERIMENTALLY
MEASURED REFLECTION AND TRANSMISSION COEFFI-
CIENTS OF A SLAB OF COMPLEX MATERIAL, IMPEDANCE
/ WAVESPEED AND CONSEQUENTLY COMPLIANCE / MASS
DENSITY OF AN EQUIVALENT MATERIAL ARE OBTAINED.

In the parameter retrieval method an inverse problem is
solved; the transmission and reflection coefficients are obtained
either experimentally or computationally for a slab of possibly
complex structure and equivalent impedance Z and wave speed ¢
are sought such that a slab of uniform Z and c yields the same
scattering parameters. A schematic of the inverse problem is
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shown in Fig. 1b).

The retrieved parameters for Z and ¢ (and consequently D
and p) are functions of angular frequency @. These functions
can either be directly characterized by a frequency domain (FD)
approach, where the retrieval method is solved for discrete set
of frequencies of interest, or a time domain (TD) approach. In
TD approaches the solution of scattering problem to a tempo-
rally short signal and a subsequent Fourier transform yield re-
trieved parameters for a wide range of frequencies. While FD
approaches are more direct, each frequency requires a separate
solution to an elliptic partial differential equation (PDE). As the
problem complexity increases or higher or larger number of fre-
quencies are considered, a TD approach can become more effi-
cient as demonstrated in [3]. This is due to the fact that only
one TD simulation is needed and TD hyperbolic PDE solvers
can have a much better solution complexity versus the number of
elements than elliptic PDE solvers. Please refer to [4] for a more
thorough review of the advantages of TD approaches, in particu-
lar the spacetime discontinuous Galerkin (SDG) method, for the
characterization of dispersive media.

In this manuscript an SDG method is presented that fur-
thers the advantages of other existing TD approaches, e.g., [3],
in deriving scattering parameters by its various unique proper-
ties particularly mesh adaptivity in spacetime. Subsequently, an
approach based on the continuity of wavenumber £ is presented
that can uniquely determine the values of D and p from Z and c.

Discontinuous Galerkin method

A

Characteristic direction

FIGURE 2. SPACETIME DIS- FIGURE
CRETIZATION USED IN THE SDG BY-PATCH
METHOD. PROCEDURE.

3. PATCH-
SOLUTION

The spacetime discontinuous Galerkin (SDG) method is a
discontinuous Galerkin (DG) method that directly discretizes the
spacetime using unstructured grids. The formulation of the SDG
method for elastodynamics problem is presented in [5], but for
completeness a brief review of the method is repeated here from
prior publications. Many exceptional properties of the method
stem from the use of causal meshes. For example in Fig. 2 the
solution of element A depends only on the solution of earlier

elements B and C given that the red facets are causal (fastest
waves shown in arrows only pass in one direction through the
facet). The level-1 elements depend only on initial conditions
and boundary conditions for the elements D and E. The level-
1 element solutions can be computed locally. Thus, causal SDG
meshes enable asynchronous, element-by-element solutions with
linear solution complexity. For more information the readers are
referred to [5].

The individual elements in the 1dxtime are replaced with
small clusters of simplicial elements called patches, where only
the exterior patch facets need to be causal as shown in Fig. 3 for
clusters of tetrahedral elements in 2d x time. Using an advancing-
front procedure, in each step the Tent Pitcher algorithm [6] ad-
vances in time a vertex in the front mesh to define a local front
update; the causality constraint limits the maximum time incre-
ment At at the vertex. New patches are solved as local problems
and update the current front, until the entire spacetime analysis
domain is solved.

An h-adaptive formulation and implementation of the SDG
method is presented in [7]. Some unique consequences of us-
ing unstructured and causal grids in spacetime are: 1) As other
DG methods element interpolation order or size can suddenly
change from one elements to its neighboring elements without
the need for any transition elements as in conventional finite el-
ement methods; 2) Due to the causality of the grid and patch-
by-patch solution procedure, adaptivity decisions are local. In
contrast, implicit time marching schemes require a global re-
solution of a time step if a few elements are rejected; 3) If the
spatial size of an element decreases, its temporal size is auto-
matically decreased by causality of the element; cf. element G
in Fig. 3. Simultaneous mesh adaptation in space and time is an
immensely important aspect for having a fully efficient adaptive
scheme in dynamics. In time marching explicit methods spatially
small elements that are potentially generated by adaptive opera-
tions can significantly restrict time advance limit for the entire
domain. This makes it difficult to achieve high refinement ratios
(ratio of domain to the smallest element size) in practice, whereas
refinement ratios of order 10* or larger are regularly experienced
with the SDG method; cf. [7]; 4) Arbitrary high temporal orders
of accuracy can be achieved at individual element level. In con-
trast, conventional time marching schemes often suffer from low
temporal order of accuracy and the geometric stiffness problem
discussed under item 3. The advantages of the SDG method are
further clarified in the numerical results section.

FORMULATION
TD wave scattering analysis

Figure 4 shows a schematic of the problem set-up to deter-
mine scattering parameters of a unit cell by a TD analysis. A
planar wave I(¢) impinges on the unit cell from the left side. The
wave is reflected to the left, dissipated in the unit cell (if any of
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FIGURE 4. DERIVATION OF SCATTERING PARAMETERS
FROM A TIME DOMAIN (TD) ANALYSIS. THE FOURIER TRANS-
FORMS OF REFLECTED (R) AND TRANSMITTED (T) WAVES IN
RESPONSE TO A TEMPORALLY SHORT INCIDENT PULSE (1),
YIELD TRANSMISSION AND REFLECTION COEFFICIENTS FOR
A WIDE RANGE OF FREQUENCIES.

its constituents are not fully elastic), and transmitted to the do-
main on the right. The temporal function /() should have a rich
FD representation to enable parameter retrieval for a wide range
or frequencies. It also has to be extremely close to zero at initial
time ¢ = 0 and final time ¢ = T so that the problem can start by
zero initial condition and be terminated at the final time without
having any significant, i.e., nonzero, solution fields beyond t = T
In addition, they enable accurate representation of Fourier trans-
form by f(@) = [~ f(t)e /® dr ~ [ f(t)e 7" dr. A common
choice for the incident wave is a Gaussian pulse,

1(r) = sin(ayt)e (0)*/¢? (1)
with the Fourier transform,

— 1 . . 7i(w+ )2 *£<607 )2
I(w):ijgexp(—]a)zo) o~ T (otw)’ _ —5(0—w ?)

where ty and ¢ are two time scales and @y is a reference fre-
quency. It is evident from Eqn. (2) that 7 has its most dominant
frequency content in [@min, Omax] = [0 — 1/, @ + 1/¢]. Thus,
if the minimum and maximum frequencies desired for the char-
acterization of unit cell are known ¢ and @, are computed by
@y = 0.5(®max + Omin) and ¢ = 2/(Bmax — Omin). The role of
fo > 0 is to make /(r) weak enough at initial time ¢ = 0, so that
the problem shown in Fig. 1 can be initialized by zero initial con-
dition without inducing large errors. In practice, 79 Z 3¢ is used.
The final time 7T is chosen such that /() and elastic waves in the
unit cell have attenuated sufficiently.

In order to more easily measure the reflected waves on the
left side of the unit cell and implement a transmitting boundary
on its far left end, a total field / scatter field (TF/SF) formulation
is employed; that is, a SF formulation is used on the left side
and TF is used in the unit cell and its right side (where trans-
mitting waves are measured). In the present work, a simple first
order transmitting boundary condition is employed on the left
and right far ends of the domain; cf. [S] for the Riemann solu-
tion for this boundary condition. The top and bottom boundaries
of the domain in general use a periodic boundary condition, im-
plied by the repetition of the unit cell. However, for the problems
considered here the unit cell is symmetric in both directions and
the simpler symmetric boundary condition can be used on the
top and bottom boundaries. The symmetry in the other direc-
tion, e.g., along an axis parallel to y axis, ensures that a simple
constitutive equation of the form € = Do and p = pv can be
employed. Otherwise, the more general Willis-type constitutive
equations [8, 9] should have been employed.

Transmission / reflection coefficients in FD

The reflection coefficient in FD is obtained by computing
the spatial average of R(®,y) = [~_R(t,y)e /®dt, where R(t,y)
is the reflected wave on the scatter side of interface A = a x [to, T
in Fig. 4 and a is the spatial domain on the reflection boundary at
t = 0. By integrating R(®,y) over y spatially-averaged reflection
coefficient are obtained. Noting this and the fact that elastic fields
are almost zero outside ¢ € [to, T|, spatially averaged reflection
coefficient becomes R(®) = \a\ [y R(t,y)e /®"dA where |a| is the
measure of a. This integration is carried over triangular faces of
the SDG discretization that lie on A. The transmission coeffi-
cient in frequency domain is computed similarly on the the right
side of the unit cell. The magnitude of incident /, reflected R,
and transmitted 7" waves are all computed based on the nonzero
component of the traction vector on the x-normal plane. This
corresponds to Oy, for longitudinal constitutive parameters con-
sidered in this manuscript. Finally, transmission and reflection

R@) and (o) = T)

coefficients are obtained by 7(®) = o) To)

Derivation of constitutive parameters

For a slab with impedance Z and wave speed ¢ in an ambient
domain with compliance Dy and mass density Py, its transmis-
sion and reflection coefficients are obtained by using two match-
ing matrices (M1, M2) at the interfaces and one propagation ma-
trix (P) as shown in Fig. 1a) to obtain,

Izz—l - 1-12
r = —_
2 ‘e

3

!Derivation of scattering coefficients for the similar electromagnetics problem
can be found in [10], chapter 6.
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where I, = (Z —Zy)/(Z + Zp) is the reflection coefficient at the
left interface and Zy = +/po/Dy is the impedance of the ambient.
The parameter z is z = e/ where k = © /c is the wavenumber
of wave in the medium and [ is its length; cf. Fig. 4. There are
many studies on the inversion of Eqn. (3) to obtain Z and ¢ once
r and ¢ are known, see for example [11-13]. Herein a process
given by [14] is followed where Z and z are given by,

B (r+1)2—¢2 _(Z+2Z) —r(Z—Zp)
S e T2 T R

The plus/minus choices of square root in the equation for Z result
in z and 1/z values but as discussed in [14] both choices even-
tually result in the same effective material properties. However,
there is an inherent ambiguity in deriving wavenumber k from z
because of the phase ambiguity of log function; that is, by taking
the log of z = /¥ we obtain,

1
k:?fj%m, where ¢ := 0 +2pm (5)

and |z| and @ € [0,27) are used in polar expression of z = |z]e/%.
That is, the phase angle of k/ is obtained only within arbitrary
number of full wave traveling in the slab. One approach to re-
solve this non-uniqueness in the inverse problem is to start from
low frequencies where p = 0 and as @ increases determine the
correct value of p by preserving the continuity of wavenumber.
A similar approach is taken in [13,15] for electromagnetics prob-
lem. Finally, after k and Z are obtained, elastic constitutive equa-

tions are given by D = % and p = %Z
a) :0 i Oi b) 0/ 7
FIGURE 5. INITIAL MESHES FOR a) A FULLY ELASTIC MID-

Midlayer, d = 0.5
LAYER A, b) 3-LAYER SET BCB OF MATERIALS B AND C.

NUMERICAL RESULTS

Figure 5 shows the schematic of the unit cell and the initial
meshes used for the two one-dimensional problems considered
herein. For the first problem, a fully elastic single layer with
compliance D = 0.1 and and density p = 1 is characterized. The
values of Dy = 1 and pg = 1 are chosen for the ambient medium.
The goal of this example is to demonstrate that the parameter re-
trieval method recovers nondispersive elastic properties D = 0.1
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FIGURE 6. COMPARISON OF NUMERICAL AND ANALYTI-
CAL REAL PART OF TRANSMISSION COEFFICIENT FOR A
FULLY ELASTIC ONE LAYER UNIT CELL.

and p = 1. Figure 6 compares computationally obtained real part
of transmission coefficient with the exact value, with the former
obtained by the Fourier transform of the SDG method’s TD so-
lution and the latter from matching / propagation matrix method.
The retrieved values for D and p, shown in Fig. 7, are very close
to the exact values almost everywhere; the regions with larger
error correspond to regions where numerator and denominator
terms in Eqn. (4) approach zero.

The second example is taken from [16], where material b
and ¢ have properties C, = 8.68 GPa, p, = 1.18 g/ em’ and C. =
320 GPa, p. = 7.954 g/cm?, respectively. The thicknesses are
Iy = 1.5 mm and /. = 0.8 mm. The ambient medium properties
are stiffness Cy = 10 GPa, and mass density pgp = 1 g/cm>. As
mentioned before, one critical step in parameter retrieval method
is the determination of p for computing the wavenumber k in
Eqgn. (5). Figure 8 depicts p and phase ¢, divided by 27, for
the range of frequencies considered. As it can be seen for @ €
[1.24,2.82]Mrad/s the phase angle for k/ is the constant value
¢ = . In fact, this region corresponds to a stopband because
the imaginary part of kK becomes nonzero. Past @ = 2.82Mrad/s
there is a shift in the value of p from O to 1. This ensures the
continuity of wavenumber k. Once k and Z are determined, C
and p are computed from C = ZT“’ and p = % Figure 9 shows
the retrieved value for C which is almost identical to the exact
solution obtained by matching/propagation matrix approach.

The last problem considered corresponds to an elastodynam-
ics metamaterial set-up from [17] where circular lead inclusions
are surrounded by rubber layers and are repeated in an epoxy
matrix. Figure 10 shows the initial mesh for this problem. A
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FIGURE 7. COMPARISON OF NUMERICALLY RETRIEVED
AND EXACT COMPLIANCE D AND MASS DENSITY p FOR
A FULLY ELASTIC ONE LAYER UNIT CELL. REGIONS OF
LARGER ERROR CORRESPOND TO FREQUENCIES WHERE
THE NUMERATOR OR DENOMINATOR OF Z IN EQUATION (4)
TENDS TO ZERO.
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FIGURE 8. THE INTEGER p AND SCALED PHASE ¢ /27w, FROM
EQUATION (5), IN THE PARAMETER RETRIEVAL STAGE FOR 3-
LAYER UNIT CELL, FOR THE ANALYTICAL AND NUMERICAL
SOLUTIONS OBTAINED BY THE MATCHING / PROPAGATION
MATRIX METHOD AND THE SDG METHOD, RESPECTIVELY.
THE REGIONS WITH CONSTANT ¢ = © AND ¢ = 27 CORRE-
SPOND TO THE FIRST AND SECOND STOPBANDS.
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FIGURE 9. THE COMARISON OF NUMERICAL AND ANALYT-
ICAL REAL PART OF COMPLIANCE C FOR THE 3-LAYER UNIT
CELL.

FIGURE 10. INITIAL MESH FOR THE CIRCULAR INCLUSION
UNIT CELL AND REFLECTION / REFLECTION SIDES.

sequence of solution visualization is shown in Fig. 11, where in-
ternal and kinetic energy densities are mapped to color and height
fields, respectively. One interesting observation is very large os-
cillations of the heavy lead sphere in its very compliant rubber
surrounding, as evident in Figs. 11b) to 11d). Also, it appears
that a considerable amount of energy remains in the unit cell by
local scattering of waves in the rubber layer. In fact, the final time
used for this simulation is much larger than ¢ = 1 us (T ~ 140¢)
to ensure attenuation of elastic fields in the unit cell. A small
damping coefficient is used in the rubber layer. To demonstrate
the advantage of using the SDG method for this problem, the
temporal intersection of spacetime mesh at time r = 32 us is
shown Fig. 12. Spacetime adaptive operations have created very
small elements in regions with high gradient solutions, while the
trailing regions of moving fronts are coarsened. The transmis-
sion coefficients for this problem are shown in Fig. 13.
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() t =130 us.

FIGURE 11. TIME SEQUENCE OF WAVE PROPAGATION IN
CIRCULAR INCLUSION UNIT CELL. STRAIN AND KINETIC
ENERGY DENSITIES ARE MAPPED TO COLOR AND HEIGHT
FIELDS, RESPECTIVELY.

FIGURE 12. SUPERPOSITION OF SPACETIME MESH INTER-
SECTION AND SDG SOLUTION AT TIME ¢ = 32 us.
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FIGURE 13. THE REAL AND IMAGINERY PARTS OF TRANS-
MISSION COEFFICIENT FOR THE CIRCULAR INCLUSION UNIT
CELL PROBLEM.

CONCLUSIONS

An efficient TD approach was presented to computationally
derive transmission and reflection coefficients of an elastody-
namic unit cell. The solution to only one TD solution to a prob-
lem with a ultra-short temporal pulse and employing the SDG
methods highly advanced adaptive operations in spacetime en-
abled very accurate computation of these scattering parameters.
The continuity of wavenumber was used as a means to eliminate
non-uniqueness in the elastic parameter retrieval from scattering
parameters.
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